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Abstract - The quality of human-robot interaction trails 
other advances in robotics and may prove to be a limiting 
factor when deploying remote, mobile robots for critical 
applications. One reason is that most autonomous robot 
behaviors are not robust and often degrade in 
unstructured environments. Another reason is that the 
design of human-robot interaction (HRI) and interfaces 
fails to follow basic usability principles or be informed by 
basic concepts of human-computer interaction. To 
address both these challenges, we have used a 
development cycle of iterative usability testing and 
redesign to hone both our interface and the robot 
behaviors that support it. The present paper presents 
results from a wide swathe of over 100 novices who used 
the resulting system to accomplish a real-world search 
and detection task. The current interface proved to be 
highly usable by novices, regardless of age or gender. 
The study demonstrates the utility of effective robot 
autonomy and examines the benefits of mixed-initiative 
control. In particular, the study compares the 
performance achieved when the robot takes initiative to 
support human driving versus the case where the human 
takes initiative to support autonomous robot driving. 
Results indicate that performance is better when the robot 
is in the driver’s seat. Optimal performance was achieved 
when the operator focuses on the search and rescue task 
and provides only intermittent direction to the robot. 

Keywords: Human-robot interaction, usability 
evaluation, novice performance, urban search and rescue. 

1 Introduction 
 Remote robotic operations often involve operator 
workload constraints, limited communication bandwidth, 
long distances, and/or a lack of visible environmental 
features. Given these constraints, teleoperation seems a 
poor choice and yet almost all mobile ground systems in 
use today place the human squarely in the driver’s seat. 
Why?  Despite the recognized need for autonomy, the 
performance of most intelligent robots does not approach 
that of a human operator and often fails to support 
operator trust. Unless we improve both the robustness of 

robot behavior and the flexibility of human-robot 
interaction methods, robots will continue to be excluded 
from the many environments and tasks where 
teleoperation is unsuitable. To address this challenge, we 
believe that rigorous, real-world human-robot interaction 
(HRI) evaluations must lead the way.    

 Work in this area has already begun. There are 
taxonomies for effective HRI [7] and metrics for 
evaluating HRI [6], but these have not yet translated into 
effective HRI evaluations in practice. Typical HRI 
evaluations utilize an informal testing scenario and still 
employ robotic designers as test participants. Such 
experiments inaccurately predict the performance to be 
expected of actual operators.  Additionally, many HRI 
evaluations occur with simulated robots and therefore say 
little about operator trust and the robustness of real-world 
robotic behavior.  

 Yanco, Drury, and Scholtz [8] have identified two 
major shortcomings in current HRI evaluations.  First, 
HRI evaluations typically fail to test the intended user of 
the system.  Often, the designers of the system are also the 
test users. Such evaluation is flawed, because system 
designers possess a much higher system understanding 
and proficiency than do the actual users of that system. 
Thus, the designers represent an upper bound of expected 
performance, and evaluations may fail to identify the 
difficulties that an actual HRI user might experience. The 
second shortcoming is that HRI evaluations are 
commonly informal, precluding careful empirical control.  
As a consequence, most HRI evaluations fail to provide 
objective or conclusive results. Yanco et al. [8] do not 
dismiss offhand the value of current HRI evaluation 
methods.  Rather, Yanco et al. aim to complement 
existing HRI evaluation methods by pointing the way 
toward more effective evaluation. 

 In response to the shortcomings identified in [8], we 
employed a carefully controlled experimental setting (i.e., 
an urban search and rescue arena) with objective 
performance metrics (i.e., the number of objects located 



and identified in the arena in a fixed amount of time). As 
suggested by Yanco et al. [8], we avoided evaluating the 
interface with system designers or seasoned operators. 
Instead, we enlisted novice users of robotic systems in our 
evaluation. Novice users do not directly represent the 
target user for a search and rescue robotic system. Most 
likely, search and rescue personnel will have been given a 
significant level of training.  

 We are not primarily interested in Search and 
Rescue, but rather in the general question of how humans 
and robots can best cooperate. Our applications include 
countermine operations, remote characterization of high 
radiation environments and military reconnaissance. 
However, we have subjected our system to HRI studies 
with Search and Rescue experts from the Federal 
Emergency Management Agency (FEMA) and found that 
just because a participant has expertise in the problem of 
search and rescue in general does not mean that they are 
necessarily good at operating robots (although some 
clearly are). In fact, as robots become more capable and 
intelligent, it may be that the protocols and methods 
utilized by Search and Rescue personnel change 
drastically.  

 We believe that by opting for novice users, we 
maximized both the relevance of our study to multiple 
applications and our evaluation’s sensitivity to interface 
shortcomings.  Such an evaluation does not, of course, 
preclude the necessity of further evaluation with the actual 
target users.  An evaluation of novice users does, 
nonetheless, provide a baseline performance measure 
using a greater number of participants than would 
otherwise be possible. 

 This is not the first human participant test of our 
HRI and control architecture.  A key, underlying 
component to successful, usable design is iterative testing 
and redesign based on the results of this testing.  
Previously, novice and expert users were asked to search 
a building in a pseudo search and rescue task, making use 
of the different levels of our variable control architecture 
[5].  This experiment had several interesting results, 
among them that users who had expertise driving 
teleoperated robotic systems were less trusting and less 
willing to use higher levels of system autonomy. This 
preliminary study served as impetus for us to change 
several aspects of the control architecture including the 
video transmission, the frequency and duration of robot 
initiative and the robot’s sensitivity to obstacles. In 
addition, this first experiment prompted us to change the 
interface to allow online configuration of the robot’s 
sensing and initiative. We also included representations 
that indicate the robot’s confidence in its own sensors and 
decisions in order to support appropriate levels of 
operator trust. We believe that through this iterative 
design process, a more robust system was created than 

could have been achieved from informal testing or 
simulation-based studies.   

2 Robotic Search and Rescue 
 Urban search and rescue has become a major 
implementation area for robotics, because robots can be 
sent into environments that may be unsafe for human 
search personnel [3].  Urban search and rescue is a true 
test bed for robots, in that it tests the robustness of the 
robotic hardware and the overall agility of the robot.   

 Urban search and rescue also tests the HRI.  Behind 
the physical agility of the robot is the ability of the 
operator to control the robot’s movement and actions in 
an effective way.  A usable interface can facilitate 
successful search and rescue operations, potentially 
saving lives. Conversely, an interface that is not usable 
can hamper search and rescue operations, ultimately 
risking lives.  Despite the obvious importance of good 
HRI for urban search and rescue, there is surprisingly 
little consistency across the interfaces that operators use to 
control robots [8]. 

 With human lives at stake, it is important to test 
search and rescue robots before they are put to use in an 
actual life and death situation.  The National Institute of 
Standards (NIST) has developed test arenas for urban 
search and rescue, which have been used in robotics 
competitions such as RoboCup Rescue and the annual 
conference of the American Association for Artifical 
Intelligence (AAAI).  The NIST test arenas are classified 
into three color-demarked categories [4].  The yellow 
category is the easiest urban-type arena, with minimal 
obstructions and clear visibility.  The orange category 
encompasses increased complexity in moving through the 
environment and locating objects of interest.  The orange 
arena is spread over two physical levels and may contain 
obstacles such as stairs, requiring greater robot agility.  
The red category is the most difficult, featuring highly 
obstructed terrain and mostly buried objects as would be 
typical in the rubble aftermath of a collapsed building. In 
our study, we approximated a NIST category yellow 
urban search and rescue arena.  

3 Study 
3.1 Participants 

The present study included 107 participants drawn at 
random from attendees of Idaho National Engineering and 
Environmental Laboratory’s (INEEL’s) annual 
community exposition.  The participants consisted of 46 
females and 61 males, ranging in age from 3 to 78 years 
old, with a mean age of 14.  It could be argued that 
attendees of a science and engineering exposition are 
likely to be more technologically savvy than the general 
populous. However, when questioned, none of the 



participants had experience in remote system operations, 
thus qualifying them as novice users of robotic interfaces. 

3.2 Robot Description 

The robot used in the present study was a wheeled 
ATVRjr manufactured by iRobot (see Figure 1), which 
measures approximately 67 cm long x 54 cm wide 
including the wheelspan.  The ATVRjr was augmented by 
a sensor array designed by the INEEL [1] and includes 
infrared sensors, bump sensors, scanning laser, ultrasonic 
sensors, visual camera, thermal camera, tilt sensor, and 
gyro.  The sensory information is used by the robot itself 
during autonomous operation and is also available in the 
form of meaningful abstractions to the robot operator.  
The robot provides a video feed to the operator from a 
forward mounted camera.  The video signal and the 
sensory data are fed to the control station via a wireless 
link.  

The robot platform was modified for use in 
hazardous environments for tasks such as radioactivity 
monitoring at decommissioned nuclear sites [2].  
Compared to conventional monitoring by humans, the 
robot can accomplish a full environmental analysis with 
minimal human exposure to radioactivity.  The sites, 
consisting of vacant buildings once used for handling 
radioactive materials, contain terrain and obstacles very 
similar to an urban search and rescue setting.  The robot’s 
robustness and agility in these harsh environments 
translate into equivalent search and rescue strengths.  
However, the robot is not directly equipped for rescue 
operations.  As a search and rescue robot, its primary goal 
is to map dangers in the environment and pinpoint the 
location of objects such as survivors. The robot performs 
searches for subsequent human rescue operations. 

 

 

Figure 1. INEEL’s augmented ATVRjr robot 

3.3 Interface Description 

The robotic interface is the culmination of iterative 
usability testing and redesign [5]. In designing the 
interface, we attempted to strike a balance between ease of 
robotic control and the rich information display necessary 
for monitoring hazardous environments or conducting 
search and rescue.  The interface consists of a single 
touchscreen display containing five sizeable windows (see 
Figure 2).  The upper left-hand window on the screen 
contains a video feed from the robot as well as controls for 
adjusting the camera. The upper right-hand window 
contains status indicators and controls for the robot’s 
sensors.  The lower right-hand window features movement 
status indicators and controls as well as a mode selector 
for different levels of robot autonomy.  The lower central 
window provides an emerging map of the environment as 
determined by a simultaneous mapping and localization 
algorithm developed by the Naval Research Laboratory.  
Finally, The lower left-hand window contains information 
about the robot’s operational status. 

Many features of the interface are geared toward 
expert operators.  For example, the interface offers two 
windows with primarily status indicators to reflect the 
robot’s operational state and input from the advanced 
sensor array.  Despite these advanced features, it is easy 
for the novice user to focus on two diagonally situated 
windows.  The upper left-hand window contains the video 
display, which allows the user to see from the robot’s 
vantage point.  The lower right-hand window contains the 
main movement controls for the robot, whereby 
directional arrow buttons actuate the movement. 

Control of the robot can be achieved by touching 
appropriate areas of the display. The effect of these 
touches depends on the mode of autonomy. When in direct 
control, operators primarily give directional commands 
using the joystick. The participants were explicitly 
instructed on using the onscreen controls as well as using 
a joystick to control the robot’s movement. 

Four robot initiative modes are available in the 
interface [1,2], affording the robot different types of 
behavior and levels of autonomy.  Tele Mode is a fully 
manual mode of operation, in which the operator must 
manually control all robot movement.  Safe Mode is 
similar to Tele Mode, in that robot movement is dependent 
on manual control.  However, in Safe Mode, the robot is 
equipped with a level of initiative that prevents the 
operator from colliding with obstacles.  In Shared Mode, 
the robot relieves the operator from the burden of 
continuous navigation by finding the optimal path based 
on its local environment.  The operator is thus freed to 
direct more cognition to the analysis of sensor data 
represented in the control interface.  Shared Mode allows 

 

 

 



 

the user to give directional input and, upon the 
identification of an item of interest, allows the operator to 
take control of the navigational tasks for further 
exploration of the area of interest. A final mode, 
Autonomous Mode, consists of a series of high-level tasks 
such as go to a point, patrol or search a selected region, or 
follow a designated path.   In Autonomous Mode, the only 
user intervention occurs on the tasking level; the robot 
itself manages all robot navigation and obstacle 
avoidance.  

Tele Mode most closely matches the current state of 
practice for remote system deployments.  Safe Mode 
provides a level of initiative necessary to protect the robot 
and its environment from the missteps of novice system 
users.  The previous study had indicated that the two most 
valuable modes were the Safe Mode and the Shared Mode. 
We wanted to further nuance the differences between 
these modes. Unfortunately, the first set of experiments 
masked the differences because, in a pattern consistent 
with a normal learning curve, the order in which each 
participant used the modes proved to be an overweening 
factor.  In the present study, only Safe Mode and Shared 
Mode were used, and participants were only given one 
opportunity to run the robot. These two modes allowed a 
direct comparison between a “protected manual control” 
and “supervised navigational autonomy,” respectively. We 
believe that these two modes represent the types of control 
scenarios that will be most relevant for use in a search and 
rescue scenario. 

3.4 Procedure 

The participants were informed they had 60 seconds 
to locate as many of the five items in the area (see Figure 
3) as possible.  Each participant was instructed on the use 

of the joystick for controlling the robot.  Additionally each 
participant was instructed on the robot’s camera controls 
(e.g. pan., tilt, zoom). For participants using Shared Mode, 
it was explained that they should let the robot control 
base-level navigation functions; however, if they wanted 
to redirect the robot, the robot would yield control to their 
joystick commands.  In order to facilitate realistic 
maneuvering through an urban environment, the robot’s 
search arena featured several obstacles. The central area 
was divided into quadrants using conventional office 
dividers, while the perimeter featured four pylons. Five 
objects were scattered throughout the arena and consisted 
of two dummies (representing injured humans), a stuffed 
dog, a disabled robot, and a small simulated explosive 
device.  The participants controlled the robot from a 
remote station without direct line of sight, thereby 
ensuring maximum use of the available interface cues. 

 

 
Figure 3. The search arena, featuring five objects (in 

black) and numerous obstacles (in grey) 
 

3.5 Results 

The effects of participant age, gender, and operational 
mode were compared against the total number of objects 
that were located and identified (see Figure 4).  In contrast 
to our previous experiment [5] which emphasized 
subjective measures such as trust, ease-of-use, and feeling 
of control, this experiment focused on quantitative 
performance metrics. The participants were grouped by 
age in five-year intervals up to 20 years old; thereafter 
they were grouped in ten-year intervals.  This ensured that 
the analysis was sensitive to possible developmental 
differences in pre-adults. There was no significant 
difference in the number of objects found across 
participants of different ages, F(8,96)=1.64, p=0.12.  Note 
that the study did not feature a balanced sample across age 
groups.  More young participants volunteered than did 
older adult participants.  Although there were fluctuations 
in the number of objects that were found by different age 

 
 

Figure 2. The status and control windows in the interface 
 



groups, the sample size was too small and there was 
insufficient statistical power to determine if those 
differences were meaningful.  

The above analysis excludes two participants, who 
were eliminated from the analysis as statistical outliers.  
Two male participants were run back-to-back and were in 
the same age group (40-50 years old).  Their performance 
at finding objects was more than two standard deviations 
above the average for other age groups.  Because they 
were the only participants in the 40-50 year age group and 
because they exhibited unusually high performance 
compared to other participants, these two participants 
produced a significant statistical effect for their age group.  
It was concluded that their high performance was 
spurious. We would not expect their performance to 
reflect typical performance levels for their age group.  
Consequently, their data were not considered in the 
analyses.  

There was no difference in the number of objects 
found due to gender.  Females statistically found the same 
number of objects as did males, M=2.54 and M=2.68 
respectively, F(1,103)=0.31, p=0.58.   

There was a significant difference due to operational 
mode, F(1,103)=4.83, p<0.05.  Participants who used 
Shared Mode found an average of 2.87 objects, while 
those who used Safe Mode found an average of 2.35 
objects.  

There were no significant twoway or threeway 
interactions between gender, age, and operational mode. 

4 Discussion and Future Work 
The results demonstrate that a very broad spectrum 

of novice users of a robotic interface were successfully 

able to operate the robot in an urban search and rescue 
scenario.  Performance was significantly better in Shared 
Mode than in Safe Mode, suggesting that the system 
usability can be enhanced through the addition of 
navigational autonomy, freeing the user to focus on the 
search and rescue task instead of robot operation. In fact, 
although it is often assumed outside the robotics 
community that robot’s can drive better than a human 
operator, this study provides some of the first compelling 
evidence that robot autonomy can actually out-perform 
human operators.  

The results also highlight the value of iterative 
usability testing and redesign in making human-robot 
interfaces easy to use, as well as the value of carefully 
controlled HRI evaluation. Still, much work remains, and 
the present study is only a starting point for further HRI 
performance and usability evaluations.   

In particular, an important area for ongoing research 
entails balancing performance and usability within the 
same HRI evaluation.  Although our human-robot 
interface has undergone extensive usability testing 
elsewhere [5], the present study focused solely on the 
performance of users.  User performance is an indirect 
measure of system usability. It would be useful to combine 
performance metrics with usability feedback from users 
during their operation of the robot. Future research will 
aim to integrate both performance and usability metrics 
into our HRI evaluations. 

While the present approach to evaluating the human-
robot interface capitalized on the performance of novice 
users, future work will balance findings from novice users 
and target or expert users.  The types of performance 
issues common to novice users may not in all cases reflect 
the problems that can arise from the complex system 
interactions that the domain expert will experience.    

Another important topic for future work concerns the 
role of navigational autonomy when multiple robots are 
controlled by a single operator or team.  The complexity 
of manual teleoperation in a search and rescue task is 
multiplied when the operator must control multiple robots. 
Future work will investigate performance on a search and 
rescue task while controlling multiple robots in Safe Mode 
and Shared Mode.  We hypothesize that the performance 
advantage of Shared Mode will be even more pronounced 
than it was in the current study. 
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Figure 4. The average number of objects found  
(out of five possible) according to age, gender, 

and mode of operation 
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